Computing matrix functions solving coupled differential models
نویسندگان
چکیده
منابع مشابه
Bernoulli matrix approach for matrix differential models of first-order
The current paper contributes a novel framework for solving a class of linear matrix differential equations. To do so, the operational matrix of the derivative based on the shifted Bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. An error estimation of presented method is provided. Numerical experiments are...
متن کاملComputing Matrix Functions
The need to evaluate a function f (A) ∈ C n×n of a matrix A ∈ C n×n arises in a wide and growing number of applications, ranging from the numerical solution of differential equations to measures of the complexity of networks. We give a survey of numerical methods for evaluating matrix functions, along with a brief treatment of the underlying theory and a description of two recent applications. ...
متن کاملbernoulli matrix approach for matrix differential models of first-order
the current paper contributes a novel framework for solving a class of linear matrix differential equations. to do so, the operational matrix of the derivative based on the shifted bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. an error estimation of presented method is provided. numerical experiments are...
متن کاملSolving matrix models using holomorphy
We investigate the relationship between supersymmetric gauge theories with moduli spaces and matrix models. Particular attention is given to situations where the moduli space gets quantum corrected. These corrections are controlled by holomorphy. It is argued that these quantum deformations give rise to non-trivial relations for generalized resolvents that must hold in the associated matrix mod...
متن کاملSimultaneity Matrix for Solving Hierarchically Decomposable Functions
The simultaneity matrix is an × matrix of numbers. It is constructed according to a set of -bit solutions. The matrix element mij is the degree of linkage between bit positions i and j. To exploit the matrix, we partition {0, . . . , − 1} by putting i and j in the same partition subset if mij is significantly high. The partition represents the bit positions of building blocks (BBs). The partiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2009
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2009.05.012